27 research outputs found

    A Compositional Approach to Embedded System Design

    Get PDF
    An important observable trend in embedded system design is the growing system complexity. Besides the sheer increase of functionality, the growing complexity has another dimension which is the resulting heterogeneity with respect to the different functions and components of an embedded system. This means that functions from different application domains are tightly coupled in a single embedded system. It is established industry practice that specialized specification languages and design environments are used in each application domain. The resulting heterogeneity of the specification is increased even further by reused components (legacy code, IP). Since there is little hope that a single suitable language will replace this heterogeneous set of languages, multi-language design is becoming increasingly important for complex embedded systems. The key problems in the context of multi-language design are the safe integration of the differently specified subsystems and the optimized implementation of the whole system. Both require the reliable validation of the system function as well as of the non-functional system properties. Current cosimulation-based approaches are well suited for functional validation and debugging. However, these approaches are less powerful for the validation of non-functional system properties. In this dissertation, a novel compositional approach to embedded system design is presented which augments existing cosimulation-based design flows with formal analysis capabilities regarding non-functional system properties such as timing or power consumption. Starting from a truly multi-language specification, the system is transformed into an abstract internal design representation which serves as basis for system-wide analysis and optimization.Ein wesentlicher Trend im Entwurf eingebetteter Systeme ist die steigende Komplexität der zu entwerfenden Systeme. Neben der zunehmenden Funktionalität hat die steigende Komplexität eine weitere Dimension: die resultierende Heterogenität bezüglich der verschiedenen Funktionen und Komponenten eines eingebetteten Systems. Dies bedeutet, daß Funktionen aus verschiedenen Anwendungsbereichen in einem einzelnen System eng miteinander kooperieren. Es ist in der industriellen Praxis etabliert, daß in jedem Anwendungsbereich spezialisierte Spezifikationssprachen zum Einsatz kommen. Da wenig Hoffnung besteht, daß eine einzige geeignete Sprache diesen heterogenen Mix von Sprachen ersetzen wird, gewinnt der mehrsprachige Entwurf für komplexe eingebettete Systeme an Bedeutung. Die Hauptprobleme im Bereich des mehrsprachigen Entwurfs sind die sichere Integration der verschieden spezifizierten Teilsysteme und die optimierte Implementierung des gesamten Systems. Beide Probleme verlangen eine zuverlässige Validierung der Systemfunktion sowie der nichtfunktionalen Systemeigenschaften. Heutige cosimulationsbasierte Ansätze aus Forschung und Industrie sind gut geeignet für die funktionale Validierung und Fehlersuche, haben aber Schwächen bei der Validierung nichtfunktionaler Systemeigenschaften. In der vorliegenden Arbeit wird ein neuartiger kompositionaler Ansatz für den Entwurf eingebetteter Systeme vorgestellt, der existierende cosimulationsbasierte Entwurfsflüsse um Fähigkeiten zur Analyse nichtfunktionaler Systemeigenschaften ergänzt. Ausgehend von einer mehrsprachigen Spezifikation, wird das System in eine abstrakte homogene interne Darstellung transformiert, die als Grundlage für die systemweite Analyse und Optimierung dient

    Control-System Stability Under Consecutive Deadline Misses Constraints

    Get PDF
    This paper deals with the real-time implementation of feedback controllers. In particular, it provides an analysis of the stability property of closed-loop systems that include a controller that can sporadically miss deadlines. In this context, the weakly hard m-K computational model has been widely adopted and researchers used it to design and verify controllers that are robust to deadline misses. Rather than using the m-K model, we focus on another weakly-hard model, the number of consecutive deadline misses, showing a neat mathematical connection between real-time systems and control theory. We formalise this connection using the joint spectral radius and we discuss how to prove stability guarantees on the combination of a controller (that is unaware of deadline misses) and its system-level implementation. We apply the proposed verification procedure to a synthetic example and to an industrial case study

    Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

    Get PDF
    Temporal isolation is one of the most significant challenges that must be addressed before Multi-Processor Systems-on-Chip (MPSoCs) can be widely adopted in mixed-criticality systems with both time-sensitive real-time (RT) applications and performance-oriented non-real-time (NRT) applications. Specifically, the main memory subsystem is one of the most prevalent causes of interference, performance degradation and loss of isolation. Existing memory bandwidth regulation mechanisms use static, dynamic, or predictive DRAM bandwidth management techniques to restore the execution time of an application under contention as close as possible to the execution time in isolation. In this paper, we propose a novel distribution-driven regulation whose goal is to achieve a timeliness objective formulated as a constraint on the probability of meeting a certain target execution time for the RT applications. Using existing interconnect-level Performance Monitoring Units (PMU), we can observe the Cumulative Distribution Function (CDF) of the per-request memory latency. Regulation is then triggered to enforce first-order stochastical dominance with respect to a desired reference. Consequently, it is possible to enforce that the overall observed execution time random variable is dominated by the reference execution time. The mechanism requires no prior information of the contending application and treats the DRAM subsystem as a black box. We provide a full-stack implementation of our mechanism on a Commercial Off-The-Shelf (COTS) platform (Xilinx Ultrascale+ MPSoC), evaluate it using real and synthetic benchmarks, experimentally validate that the timeliness objectives are met for the RT applications, and demonstrate that it is able to provide 2.2x more overall throughput for NRT applications compared to DRAM bandwidth management-based regulation approaches

    The Road towards Predictable Automotive High-Performance Platforms

    Get PDF
    Due to the trends of centralizing the E/E architecture and new computing-intensive applications, high-performance hardware platforms are currently finding their way into automotive systems. However, the SoCs currently available on the market have significant weaknesses when it comes to providing predictable performance for time-critical applications. The main reason for this is that these platforms are optimized for averagecase performance. This shortcoming represents one major risk in the development of current and future automotive systems. In this paper we describe how high-performance and predictability could (and should) be reconciled in future HW/SW platforms. We believe that this goal can only be reached in a close collaboration between system suppliers, IP providers, semiconductor companies, and OS/hypervisor vendors. Furthermore, academic input will be needed to solve remaining challenges and to further improve initial solutions

    OASIcs, Volume 68, ASD\u2719, Complete Volume

    No full text
    OASIcs, Volume 68, ASD\u2719, Complete Volum

    OASIcs, Volume 68, ASD\u2719, Complete Volume

    No full text
    OASIcs, Volume 68, ASD\u2719, Complete Volum

    Front Matter, Table of Contents, Preface, Conference Organization

    No full text
    Front Matter, Table of Contents, Preface, Conference Organizatio
    corecore